Using Artificial Neural Networks to Predict Potential Complications during Trauma Patients' Hospitalization Period

نویسندگان

  • Adrian Pearl
  • David Bar-Or
چکیده

Complications during treatment of seriously injured trauma patients cause an increase in mortality rates, and increased treatment costs, including bed occupancy. Current methods treat those at risk, and include numbers of false positives. By finding a method to predict those at risk of the three most common recorded Trauma Registry complications, considerable savings in mortality and treatment costs could arise. Artificial Neural Networks (ANN) work well with classification problems using feed-forward/back propagation methodology. Using the National Trauma Data Bank (V6.2) data files, Tiberius Software created the ANN models. Best models were identified by their Gini co-efficient, ability to predict the complication outcome selected, and their Root Mean Squared Error (RMSE) scores. The model ensemble for the three major complications recorded in the registry were determined, variables ranked and model accuracy recorded. The basic ANN is fairly accurate for those likely to contract Acute Respiratory Disease Syndrome (ARDS) though with a high rate of false positives. The ANN ability to predict Ventilator Associated Pneumonia (VAP) is less effective, though better at producing fewer false positives. Predicting Urinary Tract Infections (UTI) cases is not good enough using these input variables. Both VAP and UTI relate to those aged over 55 years, while ARDS related more to those under 16 years. The models need improving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

LIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK

In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...

متن کامل

Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Studies in health technology and informatics

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2009